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considered. The classical perturbation calculation yields unbounded
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Gravity-capillary standing waves in water of arbitrary uniform depth are

coefficients for some critical values of the depth. A perturbation solution
valid at the first critical value of the depth is derived. It is found that 1
tvo\solut:l.ons exist at this critical value. Numerical computations indicate
that these solutions are members of two different families of solutionms.

Graphs of the results are included
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SIGNIFICANCE AND EXPLANATION

In recent years important progress has been achieved in the understanding
of the effect of surface tension on nonlinear free surface flow problems. PFor
example Schwarts and Vanden-Broeck (1979) constructed solutions of high
accuracy for gravity-capillary progressive waves. Their results indicate the
existence of a number of different continuous families of solutions.

In the present paper we consider gravity-capillary standing waves in
water of arbitrary uniform depth. This problem was first considered by Concus
(1962). He calculated the solution to third order as a power series expansion
in the wave amplitude. He found that some of the series coefficients are
unbounded foxr some critical values of the depth.

We present a perturbation solution valid at the first critical value of
the depth. We show that two solutions exist at this critical value. 1In
addition we use the numerical scheme derived by Vanden-Broeck and Schwarte
(1981) to compute the solution in the neighborhood of the first critical value
of the depth. We show that the two solutions obtained at the critical value
are members of two different families of solutions. Similar properties were
found by Schwartz and Vanden-Broeck (1979) for gravity-capillary progressive

waves in the neighborhood of the first critical value of the capillary number.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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NONLINBAR GRAVITY=-CAPILLARY STANDING WAVES
IN WATER OF ARBITRARY UNIFORM DEPTH

Jean=Marc Vanden-Broeck

1. INTRODUCTION

The problem of gravity standing waves in water of arbitrary uniform depth
was solved to third order by Tadjbakhsh and Keller (1960). Their method was
applied by Concus (1962) to solve the more general problem which includes
capillary as well as gravitational forces.

These perturbation expansions were obtained by imposing a uniqueness
condition which excludes certain fluid depths. Concus (1964) showed that the
values of the depth excluded by this condition form a denumerably infinite set
which is densely distributed over the entire positive real line. It is
therefore essentially impossible to satisfy the uniqueness condition in
practice. However the solution obtained by Tadjbakhsh and Xeller (1960) is
satisfactory since it is defined for any value of the depth including those
excluded by the uniqueness condition. These results are confirmed by the
numerical calculations of Vanden—-Broeck and Schwarts (19681).

The use of the uniqueness condition in the general probleam with surface
tension results in unbounded series coefficients for certain values of the
depth (Concus (1962)). Although these values of the depth were excluded by
the uniqueness condition, the perturbation solution is clearly not
satisfactory for values of the depth close to these critical values.

In the present paper we construct a perturbation solution valid at the
first critical value of the depth. We show that two different solutions can
exist at this critical value. These solutions are similar to the "Wwilton
ripples” of the theory of gravity-capillary progressive waves (Wiltom (191S),
Pierson and Fife (1961), Schwarts and Vanden~Broeck (1979), Chen and Saffwman
(1979)).

In addition we use the numerical scheme derived by Vanden-Broeck and
Schwarts (1981) to compute the solution in the neighborhood of the first
critical valus of the depth. We show that the two solutions cbtained at the
critical value are members of two different families of solutions.

We formulate the problem in the next section. The main results obtained
by Concus (1962) are summarized in Section 3. The perturbation solution valid
at the first critical value is derived in Section 4. The numerical results
are presented in Section 5.
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We consider the time-periocdic two-dimensional potential flow of a fluid
bounded below by & horisontal bottom and above by a free surface. We assums
the motion to be periodic in tlg' horizontal direction with wavelength A. We
measure lengths in units of k = )\/2w%,

Pollowing Concus (1962) we define the parameters Y and § by the
relations

2
ok
Y -pg (2.1)

8 (2.2

N
1+Y

Here ¢ is the surface tenion. Por § << t the capillary effects are small,
whereas for (1 = §) << 1 they predominate.

We define Cartesian coordinates such that the motion is symmstric about
th.voruulpl'm_ x=0 and such that y = 0 oom'nmhtoﬂu-un
level. Ist k h donot! §hg1nun depth, ([kg(1 + v)] ‘“« the angular

frequency, [(kg(!1 + Y)] ® t the time and a the amplituds of t!_s'
linearised surface wave motion. Then we define € = ak and let ¢k n(x,t)
denote the o‘”aﬁ” of the fres surface above the mean level and
elg(1 + Y)] k ¢ the velocity potential.

In dimensionless variables the motion of the fluid is described by the

egquations (see Concus (1962))
4 =0 in 0<x <% and -h < y < en(x,t) {(2.3)

2,~3/2

2
(4 =8)n - Gn“n +c nx]

+ -,

. + -} c“: + 0;) -»o on y = ¢en(x,t) (2.4)

0’ ) '"t + “x"x on y = en(x,t) , (2.5)

W/n=0 on x=0, x=w, y==h, (2.6)

n‘-o mx.o'x.'a . (207)

®
[ nix,t)ax =0 , (2.8)
0

Vo(x,y,t + 2n) = V§(x,y,t) , (2.9)
0 & 2%

| | ex,9,t)8in t cos x &t &x &y = 0 , (2.10)
-h 0 O




ama [ [ { o(x,y,t)memxaeaxdy-%:z(unhh)v’. (2.11)
- 0

As noted by Tadjbakhsh and Keller (1960) and Concus (1962) a unique
solution does not exist for thon, values of h' /ior which the frequency of the
ath gpatial harmonic {n[1 + &(n* - Jjtanh nh} is an integral multiple of
the fundamental frequency (tanh h)'/4 this yields the uniqueness condition

2
n[‘ + G(n - 1’]t.nh nh 2 n= 2'3 XX}
tanh h #37 for {J 9tk (2.12)

3. PERTURBATION SOLUTION SATISFYING THE UNIQUENESS COMDITION (2.12)

Following Tadjbakhsh and Kellexr (1960), Concus (1962) sought a solution
as an expansion in powers of €. Thus

en = en’(x,0) + 2n'(x,0) + 3 Sn?ix,t) + oY) C(3.1)

54 = c¢°(x.y.:> +.e2¢1(x.y.t) +% t’oz(x.y.t) + o(c‘)2 (3.2)
- 1.2 0,03

™) u°+cu1+2cuz+(c) (3.3)

The solution of the zerc >rder solution is given by

" aastint cos X (3.4)
Qo = (o)o/unh h)cos t cos x cosh(y + h) (3.5)
w2 = tanh h (3.6)

This solution is made unique by imposing the condition (2.12)
Concus (1962) derived the following expressions for the first and second
order solutions

ot |
n =< [ + cos 2t]eo| 2x (3.7)
8l 1+ 38 -4
1 - 38
0
1 1 -3 1 -3
¢ -Bo«&e (8 =~ @ )t = o= (3w, + @,")sin 2t

- (31w, - zcu;:’ -(1+ 26)-;"1/15(1 - :m;‘)eo-h 2n}

sin 2t cos 2x ocosh 2(y + h) (3.8)
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ﬂ1 =0 ‘ (3.9)
] 2 _
: n b, sin t cos x + b, sin 2t cos 3x
.
+ b31s.i.n~ 3t cos x + basa.i.n 3t cos 3x (3.10) .
02 - '2 + 813eo. t cos 3x cosh 3(y + h) *
; + B, 008 3t cos x cosh(y+h) + B,.cos 3t cos 3x cosh 3(y+h) (3.11)
= , -39 - 3014967 )u - 304+68-967-276% )6 > + 9(1456+48% )]
: w, = 33l " ] (.12)
(1 + 38)(1 ~ 36u,")

vhere B8  is an arbitrary constant. The constants b;, and 85. j are
dafined the relations (35) and (36) given by Concus (1962).

Por 8 = 0 the solution (3.4)-(3.12) reduces to the solution given by
Tadjbakhsh and Keller (1960). It can easily be checked that all the terms are
bounded for any value of h if & = 0. Thus Tadjbakhsh and Keller's solution

is a satisfactory third order solution for any value of 1 h.

d For § # 0, some of the terms appearing in w,, M and b are

: unbounded at the critical values of depth defined by the relations

! 1- 36w =0 (3.13)
1- 601+ 3004 =0 (3.14)

These critical values correspond xespectively to n= j =2 and n= j =3
in (2.12).

In the next section we darive a perturbztion solution valid at the first
critical value of the depth, i.e. &t the value of the depth defined by (3.13).

3 . 4. PERTURBATION SOLUTION AT THE FIRST CRITICAL VALUE OF THE DEPTR

31 A We sesk a perturbation solution of the form (3.1)-(3.3) valid when (3.13)
g1 , is satisfied. We substitute the expansion (3.1)=(3.3) into the sys*em of

' equations (2.3)=(2.11) and collect all terms of like powers of ¢. The terms
with € ¢to the first power in (2.4) and (2.5) are given by

(1 - &)m® -Gn::O-qu:-o on y=0 (4.1)
: : 'S
0:-Uon:-o on y=20 {4.2)
m(z.s) and (2.6)-(2.11) remain unchanged in form as equations for ¢
[ )




]
N
3
3
i

= A
The terms of order €2 in (2.4), (2.5) and (2.11) are given by
1 1 1 -
(1 - 8)n "“m""o’e"o om y=0 (4.3)
’1-un1uq on =0 (4.4)
y ~ Yot " %o Y
o * 2v
f[f ¢ costcos xdat &x dy =0 (4.5)
~h 0 0
1 0.2 0.2 0,0 0
Fo = =7 L6 + (007 = uynid,, = 9,6, (4.6)
0,0 0,0 0
Gy = "x’x -n 0” + “1“t (4.7)

xq\latigns (2.3) and (2.6)=(2.10) remain of the same form as equations in
n,¢ and o

’ The loluf.isn of the zero order problem defined by (2.3), (4.1), (4.2) and
(2.6)=(2.11) is

N = gin t cos x + A cos 2t cos 2x (4.8)

o % A
¢ = sinh neo® t cos x cosh(y+h) = mﬂn 2t cos 2x cosh 2{y+h) (4.9)
u: = tanh h (4.10)

Hexre A 1is an arbitrary constant. Thus the solution of the szero order
solution is not unique when (3.13) is satisfied. 1
Difforquating (4.3) with respect to t and substituting n_ from

(4.4) and N . from (4.4), after differentiating twice with to x,
we obtain
’ 1 0 2,1
qun + (1 Gny + "o’e =H, on y= 0 (4.11)

Here H, is defined by

0 0 0 .
By, = @, F + (1= 8)¢ = Gc“ . (4.92)

Separation of variables yields for the solution of (2.3) subject to
(2.6),

- .
0'(x,y.t) - X An(t)m nx cosh n(y + h) T (4e13)
n=0 . .
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Substituting (4.13) into (4.11) we obtain
2 . 3
wyoosh nh A%() + [(1 = 8)n + &n’lainh nh A (t)

1 v
- H_cos nx ax (4.14)
ux 0 0

Hexre U =1 for n> 0 and Uy=2 for n= 0. Using (4.6)~{4.10) we can
rewrite (4.14) in the form

2 1 3 -1 2,3 2 3
Uol;(t) iy (300 + o )sin 2t - 2A (Uocatlnh 2h + 3¢°)lin 4t (4.15)

2 . - A -1 _ .3
unoo-h h A‘(t) + sinh h 51 [2m1 + ‘ (00 auo + uowunh Zh)lcos ¢t

-1

+% [4wjcotanh 2n + 6! + 210:]eo| 3t (4.16)

2
Wooosh Zh AZ(t) + 2(1 + 38)sinh 2h A (t)
- {3 a3 - -1, - - -
3 twg = (1 +260u") - 200, - 6w 8 - aaw dcotanh Zm}sin 26 (4.17)

e:co.h 3n AJ(¢) + (3 + 56)sinh 30 A (%)

AW, cos t -2 2
- ((4 + 488)cotanh 2h - (3 + 2“’"0 - 3«01

Moou 3t -2 2
- _T_ {(12 + 488)cotanh 2h + (3 + 246).0 - 21001 (4.18)

.:eolh 4n AJ(E) + (4 + 608)sinh 4h A (t)

- A’uoua 4t[(2 + 308)cotanh zh + Zlnoeotanhzzh - 60:1 (4.19)

o:oo.h nh AR(t) + [(1 - &)n + én3)sinh nh A () =0

for n= s,s.ooo {4.20)

Prom 2.9) and (4.13) it follows that mast be periodic im ¢t with
period 2% for n > 1 and from (3.13) and (4.20) that A= 0 for n > S,
The periodicity of A, requires the coefficient of cos t in (4.16) to be
ogual to sero. Thus
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A 3 -1
u‘ s (:uno @, - 4uocdunh 2h) (4.21)

If we set A = 0 in (4.15)=(4.21) we recover the system of equations
derived by Concus (1962) for the first order solution. 1In particular the
solution of (4.17) is then given by

3w, - 26»';3 - (1 + 26)037]
Lz = - sin 2¢ (4.22)

16(1 - 360»;‘)00111 2h

This solution is unbounded since (3.13) is assumed to be satisfied. Therefore
we do not gset A = 0 in (4.15).

We shall determine the constant A in such a way that the solution of
(4.17) is bounled. The appropriate compatability condition is obtained by
multiplying (4.17) by sin 2t, integrating with respect to t from 0 ¢to

2%, applying integration by parts twice to the term containing A;(t) and

using (3.13). Thus we find that the coefficient of sin 2t in the“right hand
side of (4.17) must be equal to zero. This yields the relation
3wy - (1 + zc)u;'l
m’ - 2 ’ (4.22)
8 + 248 + 16u°eotanh 2h
Substituting (4.21) into (4.22) we obtain
- 1
3] - (1 + 28067 2
A=z | 2 T } (4.23)
[1—38 + 2w, cotanh 2h) lsuo - - wocounh 2h)

The remaining part of the calculation follows closely the work of
Tadjbakhsh and Keller (1960) and Concus (1962). Integrating (4.15)=(4.19) we
obtain '

1 -3
A = 16 (wo + mo )sin 2t

0
a2 2
+ ' (wocotmh 2h + 3u°)s:l.n 4t + cot + Bo (4.24)
A, = -A[4w cotarh 2h + u;' + 21u:] (32sinh h)"! (4.25)
Az - czlin 2t (4.26)




Ar——

>
[ ]

3 Amocos t((4 + 488)cotanh 2h

1

(3 + z46)m;2 - 3m§1 [(12 + 208)sinh 3h - wzcosh 3n)”

AW cos 3t[(12 + 488)cotanh 2h

(1]
]
-2 2 2 -1
+ (3 + 246)mo - 21w°][(12 + 208)sinh 3h - 3suocosh 3h) (4.27
2 2 2
A = A wonin 4tf(2 + 308)cotanh 2h + 2mocotanh 2h - smo]
((4 + 606)ginh 4h -~ 16w:coah 4h]“' (4.28

Rere and a are constants to be determined.

a, B
substiluting (4213) into (4.3) we obtain

4
(1 - 5)"1 - G"lx = Fo - Uo nzo A;(t)cos nx cosh nh (4.29)

where P, and A,(t) are defined by (4.6) and (4.24)-(4.28). The function
n1 is therefore defined as the solution of (4.29) subject to (2.7).
The constant &_ in (4.24) is evaluated by integrating (4.29) with
regspect to x betwegn 0 and ¥ and using (2.7) and (2.8). Thus we f£ind

1 -3 “2"’0 2
no = 3 uo iy wo + 2 (1 - cotanh " 2h) (4.30) .

This completes the determination of the first order solution. It still
contains an arbitrary constant a_. This constant would be determined at
second order in a way similar to éhe way A was determined at first order.
However we shall not do this in this paper.

Equation (4.23) implies the existence of two solutions when (3.13) is
satisfied. Relations (3.3) and (4.21) show that one solution is characterized .
by a frequency larger than the zero-~order frequency and the other solution by
a frequency smaller. The wave profiles given by these two possibilities are
illustrated in Pigure 1. These solutions are very similar to the "wilton
ripples” of the theory of gravity capillary progressive waves (Wilton (1915),
Pierson and Pife (1961), Vanden~Broeck and Schwartz (1979), Chen and Saffman
(1979)).

In the next section we show that these two solutions are members of two
different families of solution. ~

5. NUMERICAL RESULTS

Concus (1962) solution is satisfactory for values of the depth far enough
awvay from the critical values (3.13) and (3.14). The solutions derived in
Section 4 are correct at the critical value (3.13). Perturbation solutions
valid for values of the depth near but not equal to the critical value (3.13)
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could be obtained by using the P.L.K. msthod. An example of such a
perturbation calculation can be found in Pierson and Fife (1961).

In the present work, we compute numerical solutions uniformly valid near
the first critical value of the depth.

Vanden-Broeck and Schwartz (1981) derived a numerical scheme “o compute
pure gravity standing waves. Their numerical procedure is generalized to
include the effect of surface tension by replacing their equation (2) by the
equation (2.4). The numerical procedure then follows closely the method
outlined in Section III of their paper.

Numerical values of W as a function of 36 for € = 0,005 and

h = 3 are shown in Figure 2. These values were obtained with N = 4 in the
equations (15) and (16) given by Vanden-Broeck and Schwartz (1981). Concus'
perturbation solution for ® is represented by the broken line in Figure 2.
It is doféaed by (3.3), (3.6), (3.9) and (3.12)., This solution is unbounded
when 38w ~ = 1. The two crosses in Figure 2 correspond to the perturbation
solution of Section 4. They are defined by (3.3), (3.6), (4.22) and (4.23).
These two solutions are in fair agreement with the numerical values.

The numerical results of Figure 2 and similar results obtained for
different values of the depth indicate that the solutions derived in Section 4
are members of two different families of solutiong‘ One family of solutions
agrees with Concus perturbation solution for 36w .~ < 1 as € %0 and the
other family agrees with Concus perturbation :olugion for 36w_ > 1. Similar
properties were found by Schwartz and Vanden-Broeck (1979) for gravity-
capillary progressive waves in the neighborhood of the first critical value of
the capillary number.

u-‘

o,
REFERENCES

Concus, P. 1962 J. Fluid Mech. 14, 568.

Concus, P. 1964 J. Fluid Mech. 19, 264.

Chen, B. and Saffman, P. G. 1979 Stud. Appl. Math. 60, 183.

Pierson, W. J. and Fife, P. 1961 J. Geophys. Res. 66, 163.

Schwartz, L. W. and Vanden-Broeck, J.-M. 1979 J. Fluid Mech. 95, 119.
Tadjbakhsh, I. and Keller, J. B. 1960 J. Fluid Mech. 8, 422.

Vanden-Broeck, J.-M. and Schwartz, L. W. 1981 phys. Fluids 24, 802.

wilton, J. R. 1915 Ppil. Mag. 39_' 688.




SECURITY CLASHPICATION OF Tuis PAGE (When Date Entersd) . :
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

. T GOVT ACCESSION,NG] 3. RECIPIENT'S CATALOG NUMBER |
2392 ' E&Q[IS 570’7. T

& TITLE (and Sudtitle) S. TYPE OF REPORT & PRRIOD COVERED
Summary Report - no specific
re n riod

Nonlinear Gravity-Capillary Standing Waves

in Water of Arbitrary Uniform Depth [ PERFORMING ORG. REPORT NuMBER
LT'Tu"WoTlF.) - CONTR RANTY NUN
Jean-Marc Vanden-Broeck DAAG29-80-C-0041
’ MCR=7927062, Mod. 1
9. PERPORMING ORGANIZATION NAME AND ADORESS . PROGRAM ELEMENT, PROJECT, TASK
Mathematics Research Center, University of AREA U wom UNIY wuleens
610 Walnut Street Wisconsin | Work Unit Number 2 -
Madison, Wisconsin 53706 | Physical Mathematics )
19. CONTROLLING OFFICE NAME AND ADDRESS .o 12. AEPORT DATE .
June 1982
(See Item 18 below) i . 73, NUMBER OF PAGES _
) 11
[T WONITORING SOENCY NAME & ADORESS(I! diliorent from Contreliing oﬁ;)T 18, SECURITY CLASS. (of thie repovt) |
UNCLASSIFIED _
(T BECy ATRFICATION BowNORADING |

BRSO TRV EaEnY (o7 5Ts Fapers
’ Approved for public release; distribution unlimited.

. 17. DISTRIBUTION STATEMENT (of the adetract entered in Bleoek 20, i different frem Repert)

L e . e st e

18, SUPPLEMENTARY NOTES

' U. S. Army Research Office . . National Science Foundation
i P. O. Box 12211 washington, DC 20550
Research Triangle Park :

North Carolina 27709

[19. KEY WORDS (Continve on reverse side If nocossary and (dentily by Bieek number)

Standing waves, surface tension

20. ABSTRACT (Centinue en reverse side i nocessary and idontily by bleck number) ]

Gravity-capillary standing waves in water of arbitrary uniform depth are
’ considered. The classical perturbation calculation yields unbounded coeffi-
cients for some critical values of the depth. A perturbation solution valid
at the first critical value of the depth is derived. It is found that two
solutions exist at this critical value. Numerical computations indicate that
these solutions are members of two different families of solutions. Graphs
of the results are included.

SR

o0 Vs 1473 cormon or 1 nov s 1s ossoLETE UNCLASSIFIED
: SECURITY CLASMPICATION OF Tnis PAGE (Whon Dove Bntereq

RS B ey, 8
OR3 . e RT

Ao P







